- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Blum, Michael_J (1)
-
Bourouiba, Lydia (1)
-
Fefferman, Nina_H (1)
-
Gibson, Nathaniel_L (1)
-
He, Qiang (1)
-
Kurum, Armand (1)
-
Lewis, Jennifer A. (1)
-
Miller, Debra_L (1)
-
Papeș, Monica (1)
-
Pasquale, Dana_K (1)
-
Roche, Ellen T. (1)
-
Ryan, Sadie_J (1)
-
Uzel, Sebastien G.M. (1)
-
Verheyen, Connor (1)
-
Verheyen, Connor A. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Verheyen, Connor A.; Uzel, Sebastien G.M.; Kurum, Armand; Roche, Ellen T.; Lewis, Jennifer A. (, Matter)Granular hydrogel matrices have emerged as promising candidates for cell encapsulation, bioprinting, and tissue engineering. How- ever, it remains challenging to design and optimize these materials given their broad compositional and processing parameter space. Here, we combine experimentation and computation to create granular matrices composed of alginate-based bioblocks with controlled structure, rheological properties, and injectability pro- files. A custom machine learning pipeline is applied after each phase of experimentation to automatically map the multidimensional input-output patterns into condensed data-driven models. These models are used to assess generalizable predictability and define high-level design rules to guide subsequent phases of development and characterization. Our integrated, modular approach opens new avenues to understanding and controlling the behavior of complex soft materials.more » « less
An official website of the United States government
